免费论文网 首页

电子科技论文3000字

时间:2016-12-01 09:14:34 来源:免费论文网

篇一:电子技术论文

运算放大器在实际中的应用

广西大学化学化工学院

摘要:运算放大器是模拟技术的捷径。电子学电路的标准已经由以往的晶体管、二极管等分立器件组成的电路变为使用运算放大器的电路。本文主要介绍运算放大器的原理以及各种实际应用电路,包括运算放大器电路在传感电路、振荡器领域应用的设计和计算方法,滤波器电路以及信号的转换电路,电流反馈型运算放大器的特性,运算放大器在低噪声、高精度测量技术中的应用以及强化运算放大器的输出能力的方法。

关键词:运算放大器,模拟技术,传感电路,振荡器领域,滤波器,低噪声

Operational amplifier in the actual application

Abstract: Operational amplifier is a shortcut to analog electronics circuit by previous standards have been composed of discrete devices such as transistors, diodes into use operational amplifier circuit this paper mainly introduces the principle of operational amplifier and a variety of application circuits, including operational amplifier circuit in the sensor circuit oscillator applications in the field of design and calculation method of filter circuit and signal conversion circuit, current feedback operational amplifier type features, operational amplifier in the application of low noise and high precision measurement technology and ways to increase the output power of the operational amplifier

Keywords: Operational amplifier, the simulation technology, sensing circuit, oscillator, filter, low noise

运算放大器原理

运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的 输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括 一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。

通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能 连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。

运算放大器(简称“运放”)是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。随着半导体技术的发展,大部分的运放是以单芯片的形式存在。运放的种类繁多,广泛应用于电子行业当中。

运算放大器在传感器、检测电路中的应用

ISL28133,这款放大器基于斩波稳定设计,综合了低微功耗(最大25μA)和低失调电压(最大6μV)的特征,它可具有直流电平平坦噪声频带以及近于零漂移的特点。对于其他需要使用更高基准电压(如10V而非5V)的应变计应用,设计人员可以考虑ISL28217或ISL28227。

电流检测和控制应用

根据具体要求的不同,检测电流强度的方法很多。其中包括使用电阻器的分路传感器、霍尔效应传感器以及电流互感器。在本例中,我们将考察应用于分路传感器的运算放大器的要求。现今的分路传感器技术已发展到具有高精度,并可提供低成本优势的特点,并且适用范围广。

基本而言,分路传感器技术是将一个电阻器置于被测量电源的线路中。因为电阻压降会影响功效,所以通常需要使用尽可能小的电阻值。而这就意味在电流检测应用中,必须放大相对较小的电阻差分功率。因此,运算放大器电路必须提供高共模范围和高精度。低功耗也是一个重要要求,特别是对电池应用的传感器。嵌入式电流检测电路也需要相对便宜,以便不显著增加被监测产品的物料成本。此外,对许多工业、公用事业和通信电流的检测应用,运算放大器需要在极端温度或长期使用条件下的漂移最小。例如,部署在电线杆顶的电流传感器由于暴露在相对恶劣的环境变化中,所以需要提供长期的稳定性能而不产生昂贵的维护要求。

许多基于分路器的电流检测应用都采用了运算放大器,例如以最小封装尺寸提供低功耗与高精度的基于斩波的零漂移放大器——ISL28133或ISL28233。此外,如图2所示,

这些斩波稳定型CMOS

器件在极端温度和长期使用条件下提供卓越的低漂移特征。

图2 将失调电压在温度和时间上的漂移将到最小化,ISL28133是一款单一斩波稳定型运算放大器,而ISL28233是同一款放大器的双器件。

电流检测是早已用于许多行业领域(如消费、工业、通信和公用事业等)的最普遍应用之一,随着新型电子器件的大量增加和人们对“绿色”电源管理技术的日益重视,其重要性日益提高。上文描述的斩波稳定型精密运算放大器提供极低失调电压和失调偏移、轨到轨输入和输出以及低功耗,可满足日益增加的嵌入式电流检测的应用需求。

运算放大器应用于手持式有毒环境安全监测仪

还有一个应用例子是将大量不同传感器输入集中在一个设备中,该设计表明良好设计的运算放大器有助于处理紧凑型便携设备上的多传感器信号链。用于监测危险环境的手持式设备越来越多地采用传感器以便最小化尺寸和最大化功能。此类设备可能包含可燃气体传感器、氧传感器和催化加热带传感器。

如图3中的框图所示,使用多个超低功耗运算放大器(如ISL28194)具备针对小型

手持式设备中多传感器信号链的优势。

图3 多传感器手持有毒环境安全检测仪

因为这些安全设备通常需要以全天候模式工作,所以ISL28194超低微功耗特征(最大450nA和 2nA[空闲时])支持更长的电池寿命而不损害性能。ISL28194设计为在单电源

(1.8V-5.5V)模式下工作,所以适用于由两节1.5V碱性电池供电的手持设备。此外,因为多个ISL28194信号链可作为单个ADC(ISL26132)的信号源,所以可以最小化整体系统级电路的复杂性和部件数量。

由于可燃气体传感器、氧传感器和热传感器的建立时间通常长达10秒,所以运算放大器的带宽并不很重要,但它们需要传感器具有恒定的偏置。另外,和前面所举的例子一样,传感器的输出大多为非常弱小的信号,所以运算放大器必须在大增益步长上提供峰-峰噪声平坦度和漂移特征。

运算放大器在实际中应用的发展趋势:运算放大器的选择范围将扩大

作为应用最广泛的电子元件之一,运算放大器的使用还会继续增加。随着提供模拟传感器功能的设备越来—从本文所举的例子到大量使用运动、近程、光和其他传感器的工业及消费设备,运算放大器的使用正在以指数规律增加。像任何良好设计的规范一样,首要标准始终必须是实现系统工作的准确性和性能目标。所以在高增益场合中,低噪声、低漂移和精密性将始终是成功的重要因素。幸运的是,现今可供系统设计人员选择的精密运算放大器更加广泛,使他们能够有效地满足最严格的性能和准确性要求,并在耗电量、尺寸、部件数量和整体成本间取得平衡。

参考文献:

(1) 彭军主编.运算放大器及其应用.北京:科学出版社,2008

(2) 童诗白主编.模拟电子技术基础(第三版).北京:高等教育出版社,2001

(3) 陈振源主编.电子技术基础.北京:高等教育出版社,2001

篇二:仪器分析论文3000字

仪器分析论文 高分子材料与工程

原子吸收光谱法

一.发展历史: 1,第一阶段——原子吸收现象的发现与科学解释

1802年,伍朗斯顿(W.H.Wollaston)在研究太阳连续光谱时,就发现了太阳连续光谱中出现的暗线。1817年,弗劳霍费(J.Fraunhofer)在研究太阳连续光谱时,再次发现了这些暗线,由于当时尚不了解产生这些暗线的原因,于是就将这些暗线称为弗劳霍费线。1859年,克希荷夫(G.Kirchhoff)与本生(R.Bunson)在研究碱金属和碱土金属的火焰光谱时,发现钠蒸气发出的光通过温度较低的钠蒸气时,会引起钠光的吸收,并且根据钠发射线与暗线在光谱中位置相同这一事实,断定太阳连续光谱中的暗线,正是太阳外围大气圈中的钠原子对太阳光谱中的钠辐射吸收的结果。 2,第二阶段——原子吸收光谱仪器的产生

原子吸收光谱作为一种实用的分析方法是从1955年开始的。这一年澳大利亚的瓦尔西(A.Walsh)发表了他的著名论文“原子吸收光谱在化学分析中的应用”奠定了原子吸收光谱法的基础。50年代末和60年代初,Hilger, Varian Techtron及Perkin-Elmer公司先后推出了原子吸收光谱商品仪器,发展了瓦尔西的设计思想。到了60年代中期,原子吸收光谱开始进入迅速发展的时期。

3,第三阶段——电热原子吸收光谱仪器的产生

1959年,苏联里沃夫发表了电热原子化技术的第一篇论文。电热原子吸收光谱法的绝对灵敏度可达到10-12-10-14g,使原子吸收光谱法向前发展了一步。近年来,塞曼效应和自吸效应扣除背景技术的发展,使在很高的的背景下亦可顺利地实现原子吸收测定。基体改进技术的应用、平台及探针技术的应用以及在此基础上发展起来的稳定温度平台石墨炉技术(STPF)的应用,可以对许多复杂组成的试样有效地实现原子吸收测定。

4,第四阶段——原子吸收分析仪器的发展

随着原子吸收技术的发展,推动了原子吸收仪器的不断更新和发展,而其它科学技术进步,为原子吸收仪器的不断更新和发展提供了技术和物质基础。近年来,使用连续光源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元素分析检测器,设计出了微机控制的原子吸收分光光度计,为解决多元素同时测定开辟了新的前景。微机控制的原子吸收光谱系统简化了仪器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变化。联用技术(色谱-原子吸收联用、流动注射-原子吸收联用)日益受到人们的重视。色谱-原子吸收联用,不仅在解决元素的化学形态分析方面,而且在测定有机化合物的复杂混合物方面,都有着重要的用途,是一个很有前途的发展方向。

二,方法简介:原子吸收光谱法(Atomic Absorption Spectroscopy,AAS),是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。是本世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器分析方法,它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。该法主要适用样品中微量及痕量组分分析。原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该

原子受激发后发射光谱的波长,由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。

原子吸收光谱法该法具有检出限低(火熖法可达μg/cm–3级)准确度高(火熖法相对误差小于1%),选择性好(即干扰少)分析速度快等优点。在温度吸收光程,进样方式等实验条件固定时,样品产生的待测元素相基态原子对作为锐线光源的该元素的空心阴极灯所辐射的单色光产生吸收,其吸光度(A)与样品中该元素的浓度(C)成正比。即 A=KC 式中,K为常数。据此,通过测量标准溶液及未知溶液的吸光度,又巳知标准溶液浓度,可作标准曲线,求得未知液中待测元素浓度。

三,基本原理:每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,与被测元素的含量成正比: A=KC

式中K为常数;C为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础,由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。原子吸收光谱位于光谱的紫外区和可见区。

四,.谱线轮廓

原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长范围,即有一定的宽度。原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。中心波长由原子能级决定。半宽度是指在中心波长的地方,极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差或波长差。半宽度受到很多实验因素的影响。影响原子吸收谱线轮廓的两个主要因素:即多普勒变宽和碰撞变宽。多普勒宽度是由于原子热运动引起的。而当原子吸收区的原子浓度足够高时,碰撞变宽是不可忽略的,其中碰撞变宽分为两种,即赫鲁兹马克变宽和洛伦兹变宽。 除上述因素外,影响谱线变宽的还有其它一些因素,例如场致变宽、自吸效应等。但在通常的原子吸收分析实验条件下,吸收线的轮廓主要受多普勒和洛伦茨变宽的影响。在2000-3000K的温度范围内,原子吸收线的宽度约为10-3-10-2nm。

五,仪器结构 原子吸收光谱仪由光源、原子化器、分光器、检测系统等几部分组成。

1,光源。光源的功能是发射被测元素的特征共振辐射。对光源的基本要求是:发射的共振辐射的半宽度要明显小于吸收线的半宽度;辐射强度大、背景低,低于特征共振辐射强度的1%;稳定性好,30分钟之内漂移不超过1%;噪声小于0.1%;使用寿命长于5安培小时。 空心阴极放电灯是能满足上述各项要求的理想的锐线光源,应用最广。

2,原子化器。其功能是提供能量,使试样干燥,蒸发和原子化。 在原子吸收光谱分析中,试样中被测元素的原子化是整个分析过程的关键环节。实现原子化的方法,最常用的有两种:

火焰原子化法:是原子光谱分析中最早使用的原子化方法,至今仍在广泛地被应用;

非火焰原子化法,其中应用最广的是石墨炉电热原子化法。

3,分光器。它由入射和出射狭缝、反射镜和色散元件组成,其作用是将所需要的共振吸收线分离出来。分光器的关键部件是色散元件,现在商品仪器都是使用光栅。原子吸收光谱仪对分光器的分辨率要求不高,曾以能分辨开镍三线Ni230.003、

Ni231.603、Ni231.096nm为标准,后采用Mn279.5和279.8nm代替Ni三线来检定分辨率。光栅放置在原子化器之后,以阻止来自原子化器内的所有不需要的辐射进入检测器。

4,检测系统。原子吸收光谱仪中广泛使用的检测器是光电倍增管,最近一些仪器也采用CCD作为检测器

六,干扰效应及其抑制:原子吸收光谱分析法与原子发射光谱分析法相比,尽管干扰较少并易于克服,但在实际工作中干扰效应仍然经常发生,而且有时表现得很严重,因此了解干扰效应的类型、本质及其抑制方法很重要。原子吸收光谱中的干扰效应一般可分为四类:物理干扰、化学干扰、电离干扰和光谱干扰。

1.物理干扰及其抑制

物理干扰是由于试液和标准溶液的物理性质的差异,引起进样速度、进样量、雾化效率、原子化效率的变化所产生的干扰。削除和抑制物理干扰常采用如下方法:

(1) 配制与待测试样溶液相似组成的标准溶液,并在相同条件下进行测定。如果试样组成不详,采用标准加入法可以削除物理干扰。

(2) 尽可能避免使用粘度大的硫酸、磷酸来处理试样;当试液浓度较高时,适当稀释试液也可以抑制物理干扰。

2. 化学干扰及其抑制

化学干扰是由于待测元素与共存组分发生了化学反反应,生成了难挥发或难解离的化合物,使基态原子数目减少所产生的干扰。化学干扰是原子吸收光谱分析中的主要干扰。这种干扰具有选择性,它对试样中各种元素的影响各不相同。影响化学干扰的因素很多,但主要是由被测定元素和共存元素的性质起决定性作用,另外,还与火焰的类型、火焰的性质等有关系。

在火焰及石墨炉原子化过程中,化学干扰的机理很复杂,消除或抑制其化学干扰应该根据具体情况采取以下具体措置措施:

(1) 提高火焰温度 适当提高火焰温度使难挥发、难解离是化合物较完全基态原子化。

(2) 加入稀释剂 加入释放剂与干扰元素生成更稳定或更难挥发的化合物,从而使被测定元素从含有干扰元素的化合物中释放出来。

(3) 加入保护剂 保护剂多数是有机络合物。它与被测定元素或干扰元素形成稳定的络合物,避免待测定元素与干扰元素生成难挥发化合物。

(4) 加入基本改进剂 石墨炉原子吸收光谱分析中,加入某些化学试剂于试液或石墨管中改变机体或被测定元素化合物的热稳定性,避免了化学干扰,这些化学试剂称为基体改进剂。

(5) 化学分离法 应用化学方法将待测定元素与干扰元素分离,不仅可以消除基体元素的干扰,还可以富集待测定元素。

3.电离干扰及其抑制

某些易电离元素在火焰中产生电离,使基态原子数减少,降低了元素测定的灵敏度,这种干扰称为电离干扰。

采用低温火焰或在试液中加入过量的更易电离的元素化合物(消电离剂),能够有效的抑制待测元素的电离。常用的消电离剂有CsCl、KCl、NaCl等。

4.光谱干扰及其抑制

原子吸收光谱分析中的光谱干扰主要有谱线干扰和背景干扰两种。

(1)谱线干扰及其抑制

谱线干扰是指单色器光谱通带内除了元素吸收线外,还进入了发射线的邻近线或其它吸收线,使分析方法的灵敏度和准确度下降。发射线的邻近线的干扰主要是指空心阴极灯的元素、杂质或载气元素的发射线与待测元素共振吸收线的重叠干扰;其它吸收线的干扰主要是指试样中共存元素吸收线与待测定元素共振线的重叠干扰。 谱线干扰的抑制通常是减小单色器的光谱通带宽度即减小狭缝宽度,提高仪器的分辩率,使元素的共振吸收线与干扰曲线完全分开。根据具体情况还可采用以下方法抑制光谱干扰,如降低灯电流,选择无干扰的其它吸收线,选用高纯度单元素的空心阴极灯,分离共存的干扰元素等方法。

(2)背景干扰和抑制

1. 背景干扰和抑制 原子吸收光谱分析中的背景干扰主要是指原子化过程中产生的分子吸收和固体微粒产生的光散射产生的干扰效应。背景干扰往往使吸光度增大,产生正误差。

2. 光谱背景干扰的抑制和校正

a.光谱背景干扰的抑制 在实际工作中,多采用改变火焰类型、燃助比和调节火焰观测区高度来抑制分子吸收干扰;在石墨炉原子吸收光谱分析中,常选用适当基体改进剂,采用选择性挥发来抑制分子吸收的干扰.

b.光谱背景的校正 在原子光谱分析中,校正背景的方法有仪器调零吸收法、邻近线校正背景法、氘灯校正背景法和塞曼效应校正背景法。

七,优点与不足

优点: 1,选择性强。这是因为原子吸收带宽很窄的缘故。因此,测定比较快速简便,并有条件实现自动化操作。在发射光谱分析中,当共存元素的辐射线或分子辐射线不能和待测元素的辐射线相分离时,会引起表观强度的变化。而对原子吸收光谱分析来说:谱线干扰的几率小,由于谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小。即便是和邻近线分离得不完全,由于空心阴极灯不发射那种波长的辐射线,所以辐射线干扰少,容易克服。在大多数情况下,共存元素不对原子吸收光谱分析产生干扰。在石墨炉原子吸收法中,有时甚至可以用纯标准溶液制作的校正曲线来分析不同试样。

2、灵敏度高。原子吸收光谱分析法是目前最灵敏的方法之一。火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10-10~10-14克。常规分析中大多数元素均能达到ppm数量级。如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。由于该方法的灵敏度高,使分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。无火焰原子吸收分析的试样用量仅需试液5~100?l。固体直接进样石墨炉原子吸收法仅需0.05~30mg,这对于试样来源困难的分析是极为有利的。譬如,测定小儿血清中的铅,取样只需10?l即可。

3,分析范围广。发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。另外,火焰发射光度分析仅能对元素的一部分加以测定。例如,钠只有1%左右的原子被激发,其余的原子则以非激发态存在。

在原子吸收光谱分析中,只要使化合物离解成原子就行了,不必激发,
电子科技论文3000字
由:免费论文网互联网用户整理提供,链接地址:
http://m.csmayi.cn/show/109085.html
转载请保留,谢谢!

相关阅读
最近更新
推荐专题