免费论文网 首页

cpu,z中文版官网

时间:2018-11-09 11:14 来源:免费论文网

篇一:CPU-Z如何使用及详细使用教程

CPU-Z如何使用及详细使用教程CPU-Z是一款著名的免费硬件信息检测软件,通过CPU-Z大家可以了解到全面的 CPU 和内存信息,以及部分主板信息。对于某些在硬件规格说明中没有提到的详细信息,可以在这里进行查询。例如在添加内存时,如果要购买规格相同、品牌相同的内存模块,通过 CPU-Z 就可以在不打开机箱的情况下得知当前内存模块的信息,从而有根据地进行选择,今天分享一个CPU-Z的使用方法的图文教程,让大家学会使用软件 CPU-Z来查看电脑的 CPU、主板、内存信息。

第一步:查看CPU信息

以CPU-Z汉化版在 HP Pavilion a750cl 上运行为例,来介绍一下如何查看各种信息,关于 CPU 的信息可以在 CPU-Z 的第一个标签页中看到,如图 1 CPU 信息标签页所示:

在 CPU 信息标签页中,比较重要的几个数值如下:

名称:处理器名称;

代号:处理器厂商对该处理器的内部代号; 封装:处理器接口类型;

工艺:生产该处理器的生产工艺,以微米为单位,在图 1 中为 0.13 微米;

电压:处理器工作电压;

指令集:该处理器所支持的指令集,如 x86-64 表示可以支持 64 位运算。

CPU 缓存信息

篇二:CPU常识。让你看懂CPU-Z

今天在网上搜索了下,很多人都在问我的CPU是不是64位的,怎么看!下面我们就来介绍下,什么是64位,怎么查看自己的CPU是不是64位的。当然,你需要先有CPU-Z这个软件。我已经上传到附件中,需要的朋友可以去下载下来看看。 下面的文章是我从网上转的。

一: 什么是酷睿: “酷睿”是一款领先节能的新型微架构,设计的出发点是提供卓然出众的性能和能效,提高每瓦特性能,也就是所谓的能效比。早期的酷睿是基于笔记本处理器的。 酷睿2:英文Core 2 Duo,是英特尔推出的新一代基于Core微架构的产品体系统称。于2006年7月27日发布。酷睿2,是一个跨平台的构架体系,包括服务器版、桌面版、移动版三大领域。其中,服务器版的开发代号为Woodcrest,桌面版的开发代号为Cooe,移动版的开发代号为Merom。 特性:全新的Core架构,彻底抛弃了Netburst架构全部采用65nm制造工艺全线产品均为双核心,L2缓存容量提升到4MB 晶体管数量达到2.91 亿个,核心尺寸为143平方毫米 性能提升40% 能耗降低40%,主流产品的平均能耗为65瓦特,顶级的X6800也仅为75瓦特前端总线提升至1066Mhz(Cooe),1333Mhz(Woodcrest),667Mhz(Merom) 服务器类Woodcrest为开发代号,实际的产品名称为Xeon 5100系列。采用LGA771接口。 Xeon 5100系列包含两种FSB的产品规格(5110采用1066 MHz,5130采用1333 MHz)。拥有两个处理核心和4MB共享式二级缓存,平均功耗为65W,最大仅为80W,较AMD的Opteron的95W功耗很具优势。 台式机类Cooe处理器分为普通版和至尊版两种,产品线包括E6000系列和E4000系列,两者的主要差别为FSB频率不同。普通版E6000系列处理器主频从1.8GHz到2.67GHz,频率虽低,但由于优秀的核心架构,Cooe处理器的性能表现优秀。此外,Cooe处理器还支持Intel的VT、EIST、EM64T和XD技术,并加入了SSE4指令集。由于Core的高效架构,Cooe不再提供对HT的支持。

二:什么是双核处理器 双核与双芯(Dual Core Vs. Dual CPU): AMD和Intel的双核技术在物理结构上也有很大不同之处。AMD将两个内核做在一个Die(晶元)上,通过直连架构连接起来,集成度更高。Intel则是将放在不同Die(晶元)上的两个内核封装在一起,因此有人将Intel的方案称为“双芯”,认为AMD的方案才是真正的“双核”。从用户端的角度来看,AMD的方案能够使双核CPU的管脚、功耗等指标跟单核CPU保持一致,从单核升级到双核,不需要更换电源、芯片组、散热系统和主板,只需要刷新BIOS软件即可,这对于主板厂商、计算机厂商和最终用户的投资保护是非常有利的。客户可以利用其现有的90纳米基础设施,通过BIOS更改移植到基于双核心的系统。 计算机厂商可以轻松地提供同一硬件的单核心与双核心版本,使那些既想提高性能又想保持IT环境稳定性的客户能够在不中断业务的情况下升级到双核心。在一个机架密度较高的环境中,通过在保持电源与基础设施投资不变的情况下移植到双核心,客户的系统性能将得到巨大的提升。在同样的系统占地空间上,通过使用双核心处理器,客户将获得更高水平的计算能力和性能。 双核处理器(Dual Core Processor): 双核处理器是指在一个处理器上集成两个运算核心,从而提高计算能力。“双

核”的概念最早是由IBM、HP、Sun等支持RISC架构的高端服务器厂商提出的,不过由于RISC架构的服务器价格高、应用面窄,没有引起广泛的注意。 最近逐渐热起来的“双核”概念,主要是指基于X86开放架构的双核技术。在这方面,起领导地位的厂商主要有AMD和Intel两家。其中,两家的思路又有不同。AMD从一开始设计时就考虑到了对多核心的支持。所有组件都直接连接到CPU,消除系统架构方面的挑战和瓶颈。两个处理器核心直接连接到同一个内核上,核心之间以芯片速度通信,进一步降低了处理器之间的延迟。而Intel采用多个核心共享前端总线的方式。专家认为,AMD的架构对于更容易实现双核以至多核,Intel的架构会遇到多个内核争用总线资源的瓶颈问题。 目前Intel推出的台式机双核心处理器有Pentium D、Pentium EE(Pentium Extreme Edition)和Core Duo三种类型,三者的工作原理有很大不同。 一、Pentium D和Pentium EE Pentium D和Pentium EE分别面向主流市场以及高端市场,其每个核心采用独立式缓存设计,在处理器内部两个核心之间是互相隔绝的,通过处理器外部(主板北桥芯片)的仲裁器负责两个核心之间的任务分配以及缓存数据的同步等协调工作。两个核心共享前端总线,并依靠前端总线在两个核心之间传输缓存同步数据。从架构上来看,这种类型是基于独立缓存的松散型双核心处理器耦合方案,其优点是技术简单,只需要将两个相同的处理器内核封装在同一块基板上即可;缺点是数据延迟问题比较严重,性能并不尽如人意。另外,Pentium D和Pentium EE的最大区别就是Pentium EE支持超线程技术而Pentium D则不支持,Pentium EE在打开超线程技术之后会被操作系统识别为四个逻辑处理器。 AMD双核处理器 AMD推出的双核心处理器分别是双核心的Opteron系列和全新的Athlon 64 X2系列处理器。其中Athlon 64 X2是用以抗衡Pentium D和Pentium Extreme Edition的桌面双核心处理器系列。 AMD推出的Athlon 64 X2是由两个Athlon 64处理器上采用的Venice核心组合而成,每个核心拥有独立的512KB(1MB) L2缓存及执行单元。除了多出一个核芯之外,从架构上相对于目前Athlon 64在架构上并没有任何重大的改变。 双核心Athlon 64 X2的大部分规格、功能与我们熟悉的Athlon 64架构没有任何区别,也就是说新推出的Athlon 64 X2双核心处理器仍然支持1GHz规格的HyperTransport总线,并且内建了支持双通道设置的DDR内存控制器。 与Intel双核心处理器不同的是,Athlon 64 X2的两个内核并不需要经过MCH进行相互之间的协调。AMD在Athlon 64 X2双核心处理器的内部提供了一个称为System Request Queue(系统请求队列)的技术,在工作的时候每一个核心都将其请求放在SRQ中,当获得资源之后请求将会被送往相应的执行核心,也就是说所有的处理过程都在CPU核心范围之内完成,并不需要借助外部设备。 对于双核心架构,AMD的做法是将两个核心整合在同一片硅晶内核之中,而Intel的双核心处理方式则更像是简单的将两个核心做到一起而已。与Intel的双核心架构相比,AMD双核心处理器系统不会在两个核心之间存在传输瓶颈的问题。因此从这个方面来说,Athlon 64 X2的架构要明显优于Pentium D架构。 虽然与Intel相比,AMD并不用担心Prescott核心这样的功耗和发热大户,但是同样需要为双核心处理器考虑降低功耗的方式。为此AMD并没有采用降低主频的办法,而是在其使用90nm工艺生产的Athlon 64 X2处理器中采用了所谓的Dual Stress Liner应变硅技术,与SOI技术配合使用,能够生产出性能更高、耗电更低的晶体管。 AMD推

出的Athlon 64 X2处理器给用户带来最实惠的好处就是,不需要更换平台就能使用新推出的双核心处理器,只要对老主板升级一下BIOS就可以了,这与Intel双核心处理器必须更换新平台才能支持的做法相比,升级双核心系统会节省不少费用。

三:什么是CPU主频: 在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。脉冲信号之间的时间间隔称为周期;而将在单位时间(如1秒)内所产生的脉冲个数称为频率。频率是描述周期性循环信号(包括脉冲信号)在单位时间内所出现的脉冲数量多少的计量名称;频率的标准计量单位是Hz(赫)。电脑中的系统时钟就是一个典型的频率相当精确和稳定的脉冲信号发生器。频率在数学表达式中用“f”表示,其相应的单位有:Hz(赫)、kHz(千赫)、MHz(兆赫)、GHz(吉赫)。其中1GHz=1000MHz,1MHz=1000kHz,1kHz=1000Hz。计算脉冲信号周期的时间单位及相应的换算关系是:s(秒)、ms(毫秒)、μs(微秒)、ns(纳秒),其中:1s=1000ms,1 ms=1000μs,1μs=1000ns。CPU的主频,即CPU内核工作的时钟频率(CPU Clock Speed)。通常所说的某某CPU是多少兆赫的,而这个多少兆赫就是“CPU的主频”。很多人认为CPU的主频就是其运行速度,其实不然。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。主频和实际的运算速度存在一定的关系,但目前还没有一个确定的公式能够定量两者的数值关系,因为CPU的运算速度还要看CPU的流水线的各方面的性能指标(缓存、指令集,CPU的位数等等)。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。比如AMD公司的AthlonXP系列CPU大多都能已较低的主频,达到英特尔公司的Pentium 4系列CPU较高主频的CPU性能,所以AthlonXP系列CPU才以PR值的方式来命名。因此主频仅是CPU性能表现的一个方面,而不代表CPU的整体性能。CPU的主频不代表CPU的速度,但提高主频对于提高CPU运算速度却是至关重要的。举个例子来说,假设某个CPU在一个时钟周期内执行一条运算指令,那么当CPU运行在100MHz主频时,将比它运行在50MHz主频时速度快一倍。因为100MHz的时钟周期比50MHz的时钟周期占用时间减少了一半,也就是工作在100MHz主频的CPU执行一条运算指令所需时间仅为10ns比工作在50MHz主频时的20ns缩短了一半,自然运算速度也就快了一倍。只不过电脑的整体运行速度不仅取决于CPU运算速度,还与其它各分系统的运行情况有关,只有在提高主频的同时,各分系统运行速度和各分系统之间的数据传输速度都能得到提高后,电脑整体的运行速度才能真正得到提高。提高CPU工作主频主要受到生产工艺的限制。由于CPU是在半导体硅片上制造的,在硅片上的元件之间需要导线进行联接,由于在高频状态下要求导线越细越短越好,这样才能减小导线分布电容等杂散干扰以保证CPU运算正确。因此制造工艺的限制,是CPU主频发展的最大障碍之一。

四:什么是前端总线 微机中总线一般有内部总线、系统总线和外部总线。内部总线是微机内部各外围芯片与处理器之间的总线,用于芯片一级的互连;而系统总线是微机中各插件板

与系统板之间的总线,用于插件板一级的互连;外部总线则是微机和外部设备之间的总线,微机作为一种设备,通过该总线和其他设备进行信息与数据交换,它用于设备一级的互连。 什么是前端总线:“前端总线”这个名称是由AMD在推出K7 CPU时提出的概念,但是一直以来都被大家误认为这个名词不过是外频的另一个名称。我们所说的外频指的是CPU与主板连接的速度,这个概念是建立在数字脉冲信号震荡速度基础之上的,而前端总线的速度指的是数据传输的速度,由于数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据位宽)÷8。目前PC机上所能达到的前端总线频率有266MHz、333MHz、400MHz、533MHz、800MHz、1066MHz、1333MHz几种,前端总线频率越大,代表着CPU与内存之间的数据传输量越大,更能充分发挥出CPU的功能。现在的CPU技术发展很快,运算速度提高很快,而足够大的前端总线可以保障有足够的数据供给给CPU。较低的前端总线将无法供给足够的数据给CPU,这样就限制了CPU性能得发挥,成为系统瓶颈。 前端总线的英文名字是Front Side Bus,通常用FSB表示,是将CPU连接到北桥芯片的总线。选购主板和CPU时,要注意两者搭配问题,一般来说,如果CPU不超频,那么前端总线是由CPU决定的,如果主板不支持CPU所需要的前端总线,系统就无法工作。也就是说,需要主板和CPU都支持某个前端总线,系统才能工作,只不过一个CPU默认的前端总线是唯一的,因此看一个系统的前端总线主要看CPU就可以。 北桥芯片负责联系内存、显卡等数据吞吐量最大的部件,并和南桥芯片连接。CPU就是通过前端总线(FSB)连接到北桥芯片,进而通过北桥芯片和内存、显卡交换数据。前端总线是CPU和外界交换数据的最主要通道,因此前端总线的数据传输能力对计算机整体性能作用很大,如果没足够快的前端总线,再强的CPU也不能明显提高计算机整体速度。数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据位宽)÷8。目前PC机上所能达到的前端总线频率有266MHz、333MHz、400MHz、533MHz、800MHz几种,前端总线频率越大,代表着CPU与北桥芯片之间的数据传输能力越大,更能充分发挥出CPU的功能。现在的CPU技术发展很快,运算速度提高很快,而足够大的前端总线可以保障有足够的数据供给给CPU,较低的前端总线将无法供给足够的数据给CPU,这样就限制了CPU性能得发挥,成为系统瓶颈。显然同等条件下,前端总线越快,系统性能越好。 外频与前端总线频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit=6400Mbit/s=800MByte/s(1Byte=8bit)。

五:多媒体指令集: CPU依靠指令来计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。指令的强弱也是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。从现阶段的主流体系结构讲,指令集可分为复杂指令集和精简指令集两部分,而从具体运用看,如Intel的MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)和AMD的3DNow!等都是CPU的

扩展指令集,分别增强了CPU的多媒体、图形图象和Internet等的处理能力。我们通常会把CPU的扩展指令集称为"CPU的指令集"。 1、精简指令集的运用在最初发明计算机的数十年里,随着计算机功能日趋增大,性能日趋变强,内部元器件也越来越多,指令集日趋复杂,过于冗杂的指令严重的影响了计算机的工作效率。后来经过研究发现,在计算机中,80%程序只用到了20%的指令集,基于这一发现,RISC精简指令集被提了出来,这是计算机系统架构的一次深刻革命。RISC体系结构的基本思路是:抓住CISC指令系统指令种类太多、指令格式不规范、寻址方式太多的缺点,通过减少指令种类、规范指令格式和简化寻址方式,方便处理器内部的并行处理,提高VLSI器件的使用效率,从而大幅度地提高处理器的性能。RISC指令集有许多特征,其中最重要的有: 指令种类少,指令格式规范:RISC指令集通常只使用一种或少数几种格式。指令长度单一(一般4个字节),并且在字边界上对齐,字段位置、特别是操作码的位置是固定的。 寻址方式简化:几乎所有指令都使用寄存器寻址方式,寻址方式总数一般不超过5个。其他更为复杂的寻址方式,如间接寻址等则由软件利用简单的寻址方式来合成。 大量利用寄存器间操作:RISC指令集中大多数操作都是寄存器到寄存器操作,只以简单的Load和Store操作访问内存。因此,每条指令中访问的内存地址不会超过1个,访问内存的操作不会与算术操作混在一起。 简化处理器结构:使用RISC指令集,可以大大简化处理器的控制器和其他功能单元的设计,不必使用大量专用寄存器,特别是允许以硬件线路来实现指令操作,而不必像CISC处理器那样使用微程序来实现指令操作。因此RISC处理器不必像CISC处理器那样设置微程序控制存储器,就能够快速地直接执行指令。 便于使用VLSI技术:随着LSI和VLSI技术的发展,整个处理器(甚至多个处理器)都可以放在一个芯片上。RISC体系结构可以给设计单芯片处理器带来很多好处,有利于提高性能,简化VLSI芯片的设计和实现。基于VLSI技术,制造RISC处理器要比CISC处理器工作量小得多,成本也低得多。 加强了处理器并行能力:RISC指令集能够非常有效地适合于采用流水线、超流水线和超标量技术,从而实现指令级并行操作,提高处理器的性能。目前常用的处理器内部并行操作技术基本上是基于RISC体系结构发展和走向成熟的。 正由于RISC体系所具有的优势,它在高端系统得到了广泛的应用,而CISC体系则在桌面系统中占据统治地位。而在如今,在桌面领域,RISC也不断渗透,预计未来,RISC将要一统江湖。 2、CPU的扩展指令集对于CPU来说,在基本功能方面,它们的差别并不太大,基本的指令集也都差不多,但是许多厂家为了提升某一方面性能,又开发了扩展指令集,扩展指令集定义了新的数据和指令,能够大大提高某方面数据处理能力,但必需要有软件支持。 MMX 指令集 MMX(Multi Media eXtension,多媒体扩展指令集)指令集是Intel公司于1996年推出的一项多媒体指令增强技术。MMX指令集中包括有57条多媒体指令,通过这些指令可以一次处理多个数据,在处理结果超过实际处理能力的时候也能进行正常处理,这样在软件的配合下,就可以得到更高的性能。MMX的益处在于,当时存在的操作系统不必为此而做出任何修改便可以轻松地执行MMX程序。但是,问题也比较明显,那就是MMX指令集与x87浮点运算指令不能够同时执行,必须做密集式的交错切换才可以正常执行,这种情况就势必造成整个系统运行质量的下降。 SSE指令集 SSE

篇三:CPU-Z检测硬件信息方法

CPU-Z是国外著名硬件网站cpuid.com所属的一款检测软件,主要可以识别CPU的基准信息,主板芯片组,内存SPD,而最近的版本增加了图形核 心的简单识别,我们都知道我的电脑,属性,里面的信息可以随便更改,所以检测软件很重要;在硬件交易的时候尤为管用,本文宗旨在于普及基础知识,没有良好 基本功是不行的.

对于大多数用户来讲,防不胜防,所以很有必要使用检测软件,硬件外壳很久之前就打磨改造忽悠人了,学习一下这些知识还是很有必要的

首先要下载CPU-Z,现在官方针对中国玩家推出了中文版,需要注意如果需要获得更好更准确的识别信息,就要使用最新版本的CPU-Z

CPU-Z可以打开多个同时显示不同的信息,这也是硬件玩家喜欢它的另外一个原因,很方便做评测

由于是中文版本,看图说话即可,图片可以点击放大

上图中,设定最少电源管理,可以启用CPU的Cool'n'quiet(冷又静)节能技术,既是动态调整CPU的工作频率,以达到节约电力的目的,前提是需要设定电源使用方案为 最少电源管理

在运行大型应用的时候,CPU会自动满负荷全速运行

下图是CPU-Z打开默认显示的界面,我们找重点讲

检测CPU,多数情况下需要注意的:

0. CPU名字(name) 这个与我的电脑,系统属性,显示不一样的话,通常就是被修改过了系统信息,需要注意

1. 插槽针脚数(Package),一个时代一种插槽,而Socket775给人感觉跨度比较大,主要是赛扬D的低能与同为Socket775的 Cooe Celeron Dual Core(酷睿赛扬双核)差距甚远;还有就是高端低端超长跨度和巨大性能差异

2. 制造工艺,纳米工艺(Technology),制造工艺数值越小,集成度相对越高,效能比前代提升更多

3. 核心电压(Core Voltage)相对来说,数值越低越节能,另一方面也说明CPU体质好,何为体质好?漏电效应低,比如某某CPU超频到4G需要1.4V电压,而相同型 号的另外一块只需要1.2V就达到了,这就是体质,由于流水线作业为了效率,另一方面也是为了部分营销策略,所以CPU都有不同程度的频率上升空间;比如 一条流水线100块CPU,最低的一块只可以稳定工作到3.0G,最高的可以稳定工作到4.0G,那么这100块CPU都被做成了3.0G批量出售

4.指令集(Instructions)很关键,决定技术进步的一个关键指标;其中X86-64是我们现在说的64位架构,就是运行64bit操作系统和 软件,64bit内存寻址;AMD-V是虚拟化技术,同时运行多个操作系统,市场上在售的Intel CPU需要区分不同的型号支持VT虚拟化技术

这款CPU现在看起来比较陈旧,够用就可以,指令集必须在SSE3以上,以下是SSE3指令集的介绍:

SSE3(Streaming SIMD Extensions 3,Intel官方称为SIMD 流技术扩展 3或数据流单指令多数据扩展指令集 3)指令集是Intel公司在SSE2指令集的基础上发展起来的。相比于SSE2,SSE3在SSE2的基础上又增加了13个额外的SIMD指令。 SSE3 中13个新指令的主要目的是改进线程同步和特定应用程序领域,例如媒体和游戏。这些新增指令强化了处理器在浮点转换至整数、复杂算法、视频编码、SIMD 浮点寄存器操作以及线程同步等五个方面的表现,最终达到提升多媒体和游戏性能的目的。Intel是从Prescott核心的Pentium 4开始支持SSE3指令集的,而AMD则是从2005年下半年Troy核心的Opteron开始才支持SSE3的。但是需要注意的是,AMD所支持的 SSE3与Intel的SSE3并不完全相同,主要是删除了针对Intel超线程技术优化的部分指令。

5.核心速度(Core Speed)=CPU即时速度,CPU-Z是一款可以动态监测CPU信息的软件,电压,核心速度,倍频,都是动态显示;倍频*外频=核心速度 (200*5=1000);HT总线,显示前端总线翻译失误,已经没有前端总线FSB概念,为HT Link,点对点直连架构,很科学的设计,现在Intel的Core I3,I5,I7的QPI总线就是照抄HT Link(Hyper-transport超传输,简称HT),在很久以前Intel独大的时候,IBM强迫Intel技术授权给AMD,相对来说今天是 互相利益吧,见怪不怪

6.缓存(Cache) AMD系列CPU是实数据读写缓存,既是CPU-L1-L2-RAM (CPU - 一级缓存 - 二级缓存 - 内存)这样的顺序依次寻址,速度来讲,L1>L2>RAM,主要看缓存命中率,而缓存越大,存储的数据越多,在大型数据任务应用的时候比较明 显,而并非程序占用硬盘空间大,运行所需要的存储数据就越多

7.核心数量 (Cores) 物理处理器核心,2个就是俗称的双核,3个就是三核,依次类推

8.线程数量 (Threads) 逻辑处理器核心+物理处理器核心=线程数量,通常1:1,一个物理核心搭配一个逻辑处理器电路,比如四核八线程,双核四线程;而核心数和线程数相等的情况 下,核心数是几个,就是几核;在任务管理器里面,显示的是总线程数量,而不是总核心数量,需要严重注意;比如Atom(阿童木)系列的上网本,单核心,2 线程的居多;早期的P4,单核心,2线程的也很多

下图是缓存详细信息,关于缓存路数,也是指标之一,不过现在不明显了,也非绝对,Atom性能那么差,二级缓存路数也不少

缓存路数主要是同时代CPU性能指标的一个区分,路数和缓存大小是成比例的,大缓存多路以发挥大缓存效能,这是必须的

下图是主板信息,主要识别芯片组信息和BIOS,而对于P45和P43,显示的是

P45/43

内存信息,同样也是动态显示,这里显示的大小是全部系统内存容量;双通道是Dual Channel,64Bit+64Bit,两个内存控制器互补;与128Bit是不一样的

还有当前内存工作的时序,比如DDRII 800,主流时序都是5-5-5-15,如果买到的是6-6-6-18,时序过高,就有点不划算

CPU-Z最近加入的图形核心识别功能,基于驱动形式,并不准确,有待提高


cpu,z中文版官网
由:免费论文网互联网用户整理提供,链接地址:
http://m.csmayi.cn/meiwen/22552.html
转载请保留,谢谢!
相关阅读
最近更新
推荐专题